

Photovoltaic (PV) Power Variability Modeling and Analysis Approaches

April 14, 2010

Joshua S Stein Ph.D.

Photovoltaic and Grid Integration Dept.

Sandia National Laboratories

(Email: jsstein@sandia.gov)

Utility Wind Integration Group: Solar Integration Portland, OR

Problem Statement

- Solar integration studies will require credible PV and CSP power output estimates for systems that are:
 - diversely sized (kWs to MWs)
 - time-synchronous
 - sub-hourly (1-min?)
 - distributed unevenly across a region
- Developing a valid model of short-term, dynamic solar resource over a large area is the main challenge.
 - PV output is proportional to spatially averaged irradiance over the plant.

Validation Criteria

- How to judge irradiance/power model validity?
 - Comparison of historical measured irradiance and power to predicted values for same time periods
 - Clearness index distribution
 - Ramp rate distributions
 - Duration and magnitude of changes
 - Autocorrelation features
 - Spatial correlation features
 - More?
- How much accuracy is necessary?
 - Depends on intended application
 - Predicting vs. Forecasting

Prediction vs. Forecasting

Prediction

- Given low resolution, historical solar estimates (e.g., satellite data), predict 1-min PV plant performance for a fleet of different plants located across a balancing area or region.
- Used for testing build-out scenarios

Forecasting

- Prediction of plant performance into the future.
 - Timing and magnitude of regional weather changes at a point or across a balancing area.
 - Location and velocity of fronts (step changes)
- Used for operations planning

Clearness Index

- PV output is primarily a function of integrated insolation reaching the array.
- Clearness index (CI) removes predictable diurnal and seasonal cycles.

$$CI = E/E_a$$

E = global horizontal irradiance [W/m²]

Ea = extraterrestrial irradiance * cosine(zenith angle) [W/m²]

Clearness index can be converted to irradiance

Clearness Index

Properties of Clearness Index

- Short time interval measurements of CI exhibit bimodal distributions.
- Valid model should reproduce this pattern.

4500 4000 3500 3000 1500 1000 500 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Clearness Index

Florida (1 month)

Hawaii (1 month)

Ramp Rate Distributions (fixed time intervals)

- Fixed time interval methods examine the distribution of irradiance and power changes ('ramps') over a fixed time interval (e.g., 1-sec, 1-min, 10-min, etc.)
 - Analysis of step changes
 - Analysis of moving averages
 - Regression of data within fixed time windows
- This has been a primary focus of PV variability studies.

Ramp Rate Distributions (fixed time intervals)

 Distribution of fixed time interval ramps provide information about the role of geographic diversity in reducing ramp rates.

characterizing variability?

Ramp Events with Flexible Time Intervals

- Utilities want information about frequency of ramp durations and magnitude in order to manage reserves.
 - e.g., 1 min ramp rate might last for 20 minutes.

Ramp Events with Flexible Time Intervals

- A piecewise linear approximation calculates 'significant' changes (e.g. Horst and Beichl, 1996 and many others).
- Results in a reduction of data and an increase in knowledge about the character of the changes.
- Ramp events are described by two of three variables:
 - Magnitude (△p)
 - 2) Duration (Δt)
 - 3) Rate = $\Delta p / \Delta t$

Characterizing Flexible Time Ramp Events

- Bivariate distribution (Duration and Magnitude)
 - 1 month of 1-sec data from Hawaii (~37,000 ramps)

Autocorrelation

- Clearness indices exhibit autocorrelation features
 - Shadows extend over large areas and influence output for many time intervals.
 - Autocorrelation plots provide information about the combination of the size and spacing of shadows and the transit speed of the shadows across the ground.
- Shadow transit speed can be measured (and shadow size and spacing can be inferred)
 - Aviation weather
 - Irradiance sensor networks

Autocorrelation

Autocorrelation plot reveals information about characteristic time scale between and inside shadows.

Spatial Correlation Features

- Irradiance (and power) measurements exhibit a spatially and temporally sensitive correlation.
- Cloud patterns can remain relatively static for some time (and distance).
- Autocorrelation features are directional and dependant upon cloud velocity patterns.

Proposed Modeling Approaches

- Plant output is related to a moving average of point irradiance (Longhetto et al., 1989).
 - Assumptions include irradiance is simply time-shifted
 - Falls apart for large or distributed plants
- Hoff and Perez (2009) suggest that relative output variability follows a 1/sqrt(N) relationship.
 - Assumptions include identical PV systems, irradiance variability is the same everywhere, cloud patterns are the same everywhere.
- Autoregressive time series models
 - Glasbey (2000, 2008), Tovar et al. (several papers)
- Cloud (Sky) Simulators
 - Assumes that cloud fields can be predicted from available data (e.g., ground based weather or satellite)

Modeling Effect of Geographic Diversity with Simple Cloud Simulator

- Synthetic cloud model
 - Define cloud size range
 - Define cloud transmittance
 - Define cloud coverage
- (1) Examine different spacing between plants
 - Fixed capacity PV plant (100 subarrays: 10 x 10)
 - Vary separation of subarrays
 - Examine output variability of fleet for a single synthetic day.
- (2) Compare small, large, and distributed output

Effect of Geographic Diversity(a)

PVCloudSim Model

Parameters: cloud radius = 10 to 100; transmittance = 0.2 to 0.7, cloud coverage = 0.35 (Clouds can overlap)

Contact Information

Joshua S Stein Ph.D.

Email: jsstein@sandia.gov

Tel: 505-845-0936

Web: http://photovoltaics.sandia.gov/

